A New Methodology for Velocity Estimation in Sheet and Rilled Overland Flow Using modified Manning's Roughness Coefficient
نویسنده
چکیده
Manning's roughness coefficient for flow over bare soil is needed in order to determine other hydraulic parameters such as flow depth and velocity in overland flow, parameters needed to calculate streampower and shear stress in erosion process studies. A modified equation of Manning's n was developed to estimate flow velocity in shallow overland flow in experiments undertaken in a 5.8 by 1 m flume of the Griffith University Tilting flume Simulated Rainfall facility and adopted data from the literature. Even with the flow of water over a soil surface in which roughness elements are well inundated, and in less erosive situations where erosional bed forms are not pronounced, the magnitude of resistance coefficients in equations such as those of Manning, Darcy-Weisbach or Chezy vary with flow velocity (at least). Using both original laboratory and field data, and data from the literature, the paper examines this question of the apparent variation of resistance coefficients in relation to flow velocity, even in the absence of interaction between hydraulics and resulting erosional bed forms. Resistance equations are first assessed as to their ability to describe overland flow velocity when tested against these data sources. The result is that Manning's equation received stronger support than the DarcyWeisbach or Chezy equations, though all equations were useful. The second question addressed is how best to estimate velocity of overland flow from measurements of slope and unit discharge, recognizing that the apparent flow velocity variation in resistance coefficients is probably a result of shortcomings in all of the listed resistance equations. A new methodology is illustrated which gives good agreement between estimated and measured flow velocity for both well-inundated sheet and rill flow. Comments are given on the predictive use of this methodology.
منابع مشابه
Estimation of Friction Coefficient in Sediment Contained Flow through Rockfill
An increase in the flow velocity in flowthrough large porous media and deflection of flow regime from Darcy law causes a nonlinear relationship between hydraulic gradient and pore velocity of media. So many investigations have done previously in such Medias. One of the most important subjects in flowthrough large porous media is relationship between friction coefficient and flow characteristics...
متن کاملEffect of Crest Roughness on Flow Characteristics over Circular Weirs
Different construction materials with different roughness used to make circular weirs highly affect surface roughness and, in turn, flow hydraulics passing over these structures. In the present research, numerous experiments under different hydraulic conditions were performed on a physical model to study the effects of roughness on flow hydraulics over a circular weir. The flow hydraulics incl...
متن کاملOn stream periphyton-turbulence interactions
A set of experiments was carried out to determine what effects periphyton communities could have on near-bed hydraulic fields. We analysed velocity distribution, skewness and kurtosis coefficients, Reynolds stresses, relative turbulence intensity, coefficient of eddy diffusivity, velocity spectra, and turbulence scales at two flows with, and without, diatom-dominated periphyton on the bed. We f...
متن کاملAmine Based CO2 Absorption in Membrane Contactor Using Polyvinyl Pyrrolidone-modified Polysulfone Flat Sheet Membrane: Experimental Study and Mass Transfer Resistance Analysis
Membrane contactor using amine based absorbents is an efficient technology for CO2 separation from gaseous mixtures. A novel porous polysulfone (PSF) flat membrane was prepared via non-solvent phase inversion method. The PSF membrane was modified by adding polyvinyl pyrrolidone (PVP) to the dope solution. The fabricated membrane was used in the serpentine flow field contactor module for CO2 abs...
متن کاملDetermination of Spatially Distributed Velocity for Flow Routing
The physically-based distributed hydrological models play an important role in watershed hydrology. Physical simulation of flow routing depends largely on the field distribution of flow velocity.Terrain analysis studies have previously focused more on the delineation of geomorphologic structures rather than the description of hydraulic factors. As affected by multiple uncertain factors includin...
متن کامل